Four color theorem: simplified maps and fullerenes (answer)


After having posted the question on mathoverflow, the answer arrived in a blink of an eye.

Here is the answer from Gordon Royle:

Use Gunnar Brinkmann (University of Ghent) and Brendan McKay (Australian National University)’s program “plantri” …

You will discover that there are:

  • 3 on 16 faces (as you said)
  • 4 on 17 faces
  • 12 on 18 faces
  • 23 on 19 faces
  • 73 on 20 faces

and then going to Sloane’s online encylopaedia you discover: https://oeis.org/A081621

So in short, the answer to your question is “yes, the sequence is fairly well known”.


From plantri http://cs.anu.edu.au/~bdm/plantri:

3-connected planar triangulations with minimum degree 5 (plantri -m5), and 3-connected planar graphs (convex polytopes) with minimum degree 5 (plantri -pm5).

plantri -pm5uv 12
plantri -pm5uv 13

.
nv ne nf | Number of graphs
12 30 20 | 1
13 33 22 | 0
14 36 24 | 1
15 39 26 | 1
16 42 28 | 3
17 45 30 | 4
18 48 32 | 12
19 51 34 | 23
20 54 36 | 73
21 57 38 | 192
22 60 40 | 651
23 63 42 | 2070
24 66 44 | 7290
25 69 46 | 25381
26 72 48 | 91441
27 75 50 | 329824
28 78 52 | 1204737
29 81 54 | 4412031
30 84 56 | 16248772
31 87 58 | 59995535
32 90 60 | 222231424
33 93 62 | 825028656
34 96 64 | 3069993552
35 99 66 | 11446245342
36 102 68 | 42758608761
37 105 70 | 160012226334
38 108 72 | 599822851579
39 111 74 | 2252137171764
40 114 76 | 8469193859271

Four color theorem: simplified maps and fullerenes


Analyzing all 3-regular graphs that have only faces with 5 edges or more (simplified), I empirically found (using a computer program) that many hypothetically possible graphs, that by Euler’s identity may exist (F5=12+F7+2F8+3F9+...), do not actually exist. Using a VF2 algorithm to filter out isomorphic maps, I also noticed that not so many graphs as I expected existed. And that one general category of graphs, that always represents a simplified 3-regular graph, is that of Fullerenes (with 12 faces F5 and an arbitrary number of F6). Here is a list of what I found, so far, for each class of graphs, from 12 faces to 20 faces (surrounding area included).

The question is: Since the computation of maps with 17, 18, 19, 20 faces (simplified and not containing isomorphic graphs) it is taking me very long time (days of CPU time on a PC), is this sequence already known?

I did post this question on: math.stackexchange.com

  • 12 faces: 1 (only 1 graph exists)
    • On 3 dimentional space (sphere) it is a dodecahedron
    • It is a fullerene: 20-fullerene Dodecahedral graph
  • 13 faces: 0 (no simplified graphs exist with 13 faces)
    • The hypothetical (by Euler’s identity) map of 12 F5 and 1 F6 does not exist
  • 14 faces: 1 (12 F5 + 2 F6)
    • The hypothetical (by Euler’s identity) map of 13 F5 and 1 F7 does not exist
    • It is a fullerene: GP (12,2) Generalized Petersen graph
  • 15 faces: 1 (12 F5 + 3 F6)
    • The hypothetical (by Euler’s identity) map of 14 F5 and 1 F8 does not exist
    • It is a fullerene: 26-Fullerene
  • 16 faces: 3 (Two graphs are 12 F5 + 4 F6. The other has 14 F5 + 2 F7)
    • The hypothetical (by Euler’s identity) map of 14 F5 and 2 F7 does exists
    • The other two are Fullerenes
  • 17 faces: ???
  • 18 faces: ???
  • 19 faces: ???
  • 20 faces: ???

Many fullerenes are here: http://hog.grinvin.org/Fullerenes.

Last things implemented in the Java program (github):

  • Save and restore all lists (maps and todoList) to disk
    • Done: 19/Gen/2013
  • Verify the various filters when generating maps
    • Done: 19/Gen/2013
  • Browse the todoList
    • Done: 20/Gen/2013

Here are the maps … four colored … up to 16 faces (ocean included):

12 14 15
16 16 16

And the same graphs elaborated using yWorks:

12 14 15
16 16 16