Four color theorem: back to the basics


Finally I bought two books about the four color theorem: “Four Colors Suffice: How the Map Problem Was Solved” by Robin Wilson e Ian Stewart; and the “The Four-Color Theorem: History, Topological Foundations, and Idea of Proof” by Rudolf Fritsch and Gerda Fritsch.

I am currently reading the first one, and I want to revisit the fundamentals by using the method Kempe employed when he believed he had solved the problem.

With these differences: I will approach it removing one edge at a time from F2, F3, F4, or F5 faces (unavoidable set) to reduce the map to two faces (including the ocean). Afterward, I will restore the edges in reverse order, consistently working with 3-regular planar graphs. Instead of applying Kempe’s chain color switching solely to the faces, I will consider Tait coloring of the edges and apply Kempe’s chain color switching to the edges.

Follow the arrow to visualize the steps:

kempe-reduction-and-kempe's-chain-v3.png

1 thought on “Four color theorem: back to the basics

  1. Pingback: Four color theorem: almost there? | Four color theorem

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.